Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 1, 2007

Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures

  • K. Svoboda EMAIL logo , A. Siewiorek , D. Baxter , J. Rogut and M. Punčochář
From the journal Chemical Papers

Abstract

The reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.

[1] Messerschmitt, A., Ger. DE 266863 (1911). Search in Google Scholar

[2] Fraser, S. and Hacker, V., Sponge Iron Process for Manned Space Exploration, Final Project Report, Technical Officer: Dr. Tiziana Pipoli, Ariadna Contract No. 18461/04/NL/MV, 2005. Search in Google Scholar

[3] Hacker, V., Fankhauser, R., Faleschini, G., Fuchs, H., Friedrich,, K., Muhr, M., and Kordeschet, K., J. Power Sources 86, 531 (2000). http://dx.doi.org/10.1016/S0378-7753(99)00458-910.1016/S0378-7753(99)00458-9Search in Google Scholar

[4] Hacker, V., Faleschini, G., Fuchs, H., Fankhauser, R., Simader, G., Ghaemi, M., Spreitz, B., and Friedrichet, K., J. Power Sources 71, 226 (1998). http://dx.doi.org/10.1016/S0378-7753(97)02718-310.1016/S0378-7753(97)02718-3Search in Google Scholar

[5] Lundberg, M., Int. J. Hydrogen Energy 18, 369 (1993). http://dx.doi.org/10.1016/0360-3199(93)90214-U10.1016/0360-3199(93)90214-USearch in Google Scholar

[6] Inoue, M., Hasegawa, N., Uehara, R., Gokon, N., Kaneko, H., and Tamaura, Y., Sol. Energy 76, 309 (2004). http://dx.doi.org/10.1016/j.solener.2003.08.03310.1016/j.solener.2003.08.033Search in Google Scholar

[7] Adanez, J., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Abad, A., and Palacios, J. M., Energy Fuels 18, 371 (2004). http://dx.doi.org/10.1021/ef030145210.1021/ef0301452Search in Google Scholar

[8] Son, S. R. and Kim, S. D., Ind. Eng. Chem. Res. 45, 2689 (2006). http://dx.doi.org/10.1021/ie050919x10.1021/ie050919xSearch in Google Scholar

[9] Cao, Y. and Pan, W.-P., Energy Fuels 20, 1836 (2006). http://dx.doi.org/10.1021/ef050228d10.1021/ef050228dSearch in Google Scholar

[10] Mattisson, T., Johansson, M., and Lyngfelt, A., Fuel 85, 736 (2006). http://dx.doi.org/10.1016/j.fuel.2005.07.02110.1016/j.fuel.2005.07.021Search in Google Scholar

[11] Hacker, V., J. Power Sources 118, 311 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00076-410.1016/S0378-7753(03)00076-4Search in Google Scholar

[12] Otsuka, K., Kaburagi, T., Yamada, C., and Takenaka, S., J. Power Sources 122, 111 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00398-710.1016/S0378-7753(03)00398-7Search in Google Scholar

[13] Takenaka, S., Sou, V. T. D., and Otsuka, K., Energy Fuels 18, 820 (2004). http://dx.doi.org/10.1021/ef030188i10.1021/ef030188iSearch in Google Scholar

[14] Urasaki, K., Tanimoto, N., Hayashi, T., Sekine, Y., Kikuchi, E., and Matsukata, M., Appl. Catal., A 228, 143 (2005). 10.1016/j.apcata.2005.04.023Search in Google Scholar

[15] Hui, W., Takenaka, S., and Otsuka, K., Int. J. Hydrogen Energy 31, 1732 (2006). http://dx.doi.org/10.1016/j.ijhydene.2005.12.01010.1016/j.ijhydene.2005.12.010Search in Google Scholar

[16] Cho, P., Mattisson, T., and Lyngfeld, A., Ind. Eng. Chem. Res. 44, 668 (2005). http://dx.doi.org/10.1021/ie049420d10.1021/ie049420dSearch in Google Scholar

[17] Barin, I. and Knacke, O., Thermochemical Data of Pure Substances, 3rd Edition. VCH, Weinheim, 1995. 10.1002/9783527619825Search in Google Scholar

[18] Tseng, W. J., Hsu, C.-K., Chi, C.-C., and Teng, K.-H., Mater. Lett. 52, 313 (2002). http://dx.doi.org/10.1016/S0167-577X(01)00412-810.1016/S0167-577X(01)00412-8Search in Google Scholar

[19] Kenfack, F. and Langbein, H., Cryst. Res. Technol. 41, 748 (2006). http://dx.doi.org/10.1002/crat.20051066310.1002/crat.200510663Search in Google Scholar

[20] Bučko, M. and Haberko, K., J. Eur. Ceram. Soc., in press. Search in Google Scholar

[21] Bolt, P. H., Habraken, F. H. P. M., and Geus, J. W., J. Solid State Chem. 135, 59 (1998). http://dx.doi.org/10.1006/jssc.1997.759010.1006/jssc.1997.7590Search in Google Scholar

[22] Twigg, M. V. and Richardson, J. T., Appl. Catal., A 190, 61 (2000). 10.1016/S0926-860X(99)00269-0Search in Google Scholar

[23] Readman, J. E., Olafsen, A., Smith, J. B., and Blom, R., Energy Fuels 20, 1382 (2006). http://dx.doi.org/10.1021/ef050431910.1021/ef0504319Search in Google Scholar

[24] Svoboda, K., Slowinski, G., Rogut, J., and Siewiorek, A., 17th International Congress of Chemical and Process Engineering CHISA, Prague, 2006. Search in Google Scholar

[25] Villa, R., Cristiani, C., Groppi, G., Lietti, L., Forzatti, P., Cornaro, U., and Rossini, S., J. Mol. Catal. A: Chem. 204, 637 (2003). http://dx.doi.org/10.1016/S1381-1169(03)00346-710.1016/S1381-1169(03)00346-7Search in Google Scholar

[26] Li, G. H., Hu, L. J., and Hill, J. M., Appl. Catal., A 301, 16 (2006). 10.1016/j.apcata.2005.11.013Search in Google Scholar

[27] Stobbe, E. R., de Boer, B. A., and Geus, J. W., Catal. Today 47, 161 (1999). http://dx.doi.org/10.1016/S0920-5861(98)00296-X10.1016/S0920-5861(98)00296-XSearch in Google Scholar

[28] Terayama, K., Ikeda, M., and Taniguchi, M., Trans. Jpn. Inst. Met. 24, 24 (1983). Search in Google Scholar

[29] Malavasi, L., Ghigna, P., Chiodelli, G., Maggi, G., and Flor, G., J. Solid State Chem. 166, 171 (2002). http://dx.doi.org/10.1006/jssc.2002.957710.1006/jssc.2002.9577Search in Google Scholar

[30] Christel, L., Pierre, A., and Abel, D. A. M. R., Thermochim. Acta 306, 51 (1997). http://dx.doi.org/10.1016/S0040-6031(97)00299-210.1016/S0040-6031(97)00299-2Search in Google Scholar

[31] Guillemet-Fritsch, S., Navrotsky, A., Tailhades, P., Coradin, H., and Wang, M., J. Solid State Chem. 178, 106 (2005). http://dx.doi.org/10.1016/j.jssc.2004.10.03110.1016/j.jssc.2004.10.031Search in Google Scholar

[32] Jablonski, G. A., Geurts, F. W., Sacco, A., and Biederman, R. R., Carbon 30, 87 (1992). http://dx.doi.org/10.1016/0008-6223(92)90111-910.1016/0008-6223(92)90111-9Search in Google Scholar

[33] Grabke, H. J. and Wolf, I., Mater. Sci. Eng. 87, 23 (1987). http://dx.doi.org/10.1016/0025-5416(87)90357-010.1016/0025-5416(87)90357-0Search in Google Scholar

[34] Mallon, C. and Kendall, K., J. Power Sources 145, 154 (2005). http://dx.doi.org/10.1016/j.jpowsour.2005.02.04310.1016/j.jpowsour.2005.02.043Search in Google Scholar

[35] Li, Y., Zhang, B. C., Xie, X. W., Liu, J. L., Xu, Y. D., and Shen, W. J., J. Catal. 238, 412 (2006). http://dx.doi.org/10.1016/j.jcat.2005.12.02710.1016/j.jcat.2005.12.027Search in Google Scholar

[36] Zeng, Z. and Natesan, K., Solid State Ionics 167, 9 (2004). http://dx.doi.org/10.1016/j.ssi.2003.11.02610.1016/j.ssi.2003.11.026Search in Google Scholar

Published Online: 2007-4-1
Published in Print: 2007-4-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-007-0007-6/html
Scroll to top button